Sorting Algorithms

Now that you’ve learned about arrays and
linked lists, are you Team Array or Team

Linked List?
pollev.com/cs106bpoll




Team Array or Team Linked List... and why?
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[linked list operations]



Common linked lists operations

e Traversal
o How do we walk through all elements in the linked list?

e Rewiring
o How do we rearrange the elements in a linked list?

e Insertion
o How do we add an element to a linked list?

e Deletion
o How do we remove an element from a linked list?



Linked List Traversal Takeaways

e Temporary pointers into lists are very helpful!
o When processing linked lists iteratively, it's common to introduce pointers that point to cells in
multiple spots in the list.
o This is particularly useful if we’re destroying or rewiring existing lists.

e Using awhile loop with a condition that checks to see if the current pointer is
nullptr is the prevailing way to traverse a linked list.

e lterative traversal offers the most flexible, scalable way to write utility functions
that are able to handle all different sizes of linked lists.



Pointers by Value

e Unless specified otherwise, function

pointer in —
arguments in C++ are passed by main

value — this includes pointers!

e A function that takes a pointer as an
argument gets a copy of the

, pointer in
pointer. function l '7

e We can change where the copy
points, but not where the original
pointer points.




Pointers by Reference

e To solve this problem, we can

e The mechanics of how to do so:

void prependTo( , string data) {
Node* newNode = new Node;
newNode->data = data;
TA/S’ s a
newNode->next = list; IF we change where lict
) pointe in this function, the
changes will ctick!




A more efficient appendTo() - using a tail pointer!

Node* createListWithTailPtr(Vector<string> values) {
if (values.isEmpty()) return nullptr;
Node* head = new Node(values[@], nullptr);

Node* cur = head;

for (int i1 = 1; i < values.size(); i++) {
Node* newNode = new Node(values[i], nullptr);
cur->next = newNode;
cur = newNode;

}

return head;




Takeaways for manipulating the middle of a list

While traversing to where you want to add/remove a node, you’ll often want to

o
keep track of both a current pointer and a previous pointer.

This makes rewiring easier between the two!
This also means you have to check that neither is nullptr before dereferencing.
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Linked list summary

e We saw lots of ways to examine and manipulate linked lists!
Traversal

Rewiring

Insertion (front/back/middle)

Deletion (front/back/middle)

O O O O

e We saw linked lists in classes and outside classes, and pointers passed by
value and passed by reference.

e Assignment 5 will really test your understanding of linked lists.
o Draw lots of pictures!
o Test small parts of your code at a time to make sure individual operations are working correctly.



Sorting



What are some real-world
algorithms that can be used to
organize data?



What is sorting?



This is one kind of sorting...




This is one kind of sorting...but not quite what we mean!




sorting
Given a list of data points, sort those
data points into ascending / descending
order by some quantity.
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Approaches to sorting

e Suppose we want to rearrange a sequence to put elements into ascending
order (each element is less than or equal to the element that follows it).

e In this lecture, we're going to answer the following questions:
o What are some strategies we could use?
o How do those strategies compare?
o Isthere a “best” strategy?
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https://www.toptal.com/developers/sorting-algorithms

Sorting algorithms

Animations couvrtesy of Keith S chwarz!
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Our first sort; Selection sort
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Selection sort algorithm

e Find the smallest element and move it to the first position.

e Find the smallest element of what'’s left and move it to the second position.
e Find the smallest element of what'’s left and move it to the third position.

e Find the smallest element of what’s left and move it to the fourth position.

o (etc)



void selectionSort(Vector<int>& elems) {
for (int index = @; index < elems.size(); index++) {
int smallestIndex = indexOfSmallest(elems, index);
swap(elems[index], elems[smallestIndex]);

}
/**
* @iven a vector and a starting point, returns the index of the smallest
* element in that vector at or after the starting point
*/
int indexOfSmallest(const Vector<int>& elems, int startPoint) {

int smallestIndex = startPoint;

for (int i = startPoint + 1; i < elems.size(); i++) {

if (elems[i] < elems[smallestIndex]) {
smallestIndex = i;

}
}

return smallestIndex;



Analyzing selection sort

e How much work do we do for selection sort?
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Analyzing selection sort

e How much work do we do for selection sort?
o To find the smallest value, we need to look at all n elements.
o To find the second-smallest value, we need to look atn — 1 elements.
o To find the third-smallest value, we need to look atn - 2 elements.
o This process continues until we have found every last "smallest element”

from the original collection.




Analyzing selection sort

e How much work do we do for selection sort?
o To find the smallest value, we need to look at all n elements.
o To find the second-smallest value, we need to look atn — 1 elements.
o To find the third-smallest value, we need to look atn - 2 elements.
o This process continues until we have found every last "smallest element”
from the original collection.

e This, the total amount of work we havetodoisisn + (n - 1) + (n - 2)
+ ..+ 1



The complexity of selection sort

e There is a mathematical formula that tells us
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o Totalwork= O((n * (n+l)) / 2)
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The complexity of selection sort

e There is a mathematical formula that tells us
n+ (n-1) + ... +2 + 1=

e Thus, the overall complexity of selection sort can be simplified as follows:
o Totalwork= O((n * (n+l)) / 2)

= O(n * (n+l)) € Big-0 ignorec conctant factors

O(n? + n)

= 0O(n?) - Big-0 ignorec low-order terme




Selection sort takeaways

e Selection sort works by "selecting" the smallest remaining
element in the list and putting it in the front of all remaining
elements.

e Selection sortis an O (n?) algorithm.

e Can we do better?
o Yes!



Insertion Sort

(Bonus Content, not covered in live
lecture)



Insertion sort
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Insertion sort
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Insertion sort

Insert the yellow element
into the sequence that
includes the blue element.
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Insertion sort algorithm

e Repeatedly insert an element into a sorted sequence at the front of the array.

e To insert an element, swap it backwards until either:
o (1) it’'s bigger than the element before it, or
o (2)it's at the front of the array.




Insertion sort code

void insertionSort(Vector<int>& v) {
for (int i = 0; i < v.size(); i++) {
/* Scan backwards until either (1) the preceding
* element 1s no bigger than us or (2) there 1is
* no preceding element. */
for (int j =1 - 1; j >=0; j--) {
if (v[j] <= v[]j + 1]) break;
/* Swap this element back one step. */
swap(v[jl, v[J + 1]);



The complexity of insertion sort

e Inthe worst case (the array is in reverse sorted order), insertion sort takes time
O(n?).

o  The analysis for this is similar to selection sort!

e Inthe best case (the array is already sorted), insertion takes time O(n) because

you only iterate through once to check each element.
o  Selection sort, however, is always O(n?) because you always have to search the remainder of
the list to guarantee that you’re finding the minimum at each step.

e Fun fact: Insertion sorting an array of random values takes, on average, O(n?)

time.
o This is beyond the scope of the class — take CS109 if you’re interested in learning more!



How can we design better,
more efficient sorting
algorithms?



Divide-and-Conquer



Motivating Divide-and-Conquer

e So far, we've seen 0 (N?) sorting algorithms. How can we start to do better?
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Motivating Divide-and-Conquer
e So far, we've seen 0 (N?) sorting algorithms. How can we start to do better?

e Assume that it takes t seconds to run selection sort on the following array:

14 6 | 3/ 9|7 16/2 |15/ 5 10| 8 |11|1 13|12 4

e Poll: Approximately how many seconds will it take to run selection sort on each
of the following arrays? pollev.com/cs106bpoll

14/ 6 | 3|97 |16 2 |15 5/10 8 11 1 13|12 4




@& When poll is active, respond at pollev.com/cs106bpoll
5 Text CS106BPOLL to 22333 once to join

How long would it take to sort an array half the size?

Same time (t seconds)

Half the time (t/2 seconds)

A quarter of the time (t/4 seconds)
An eighth of the time (t/8 seconds)

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Motivating Divide-and-Conquer

e So far, we've seen 0 (N?) sorting algorithms. How can we start to do better?

e Assume that it takes A”‘fwek" EACA arkaﬂ the following array:
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14/ 6|39/ 4 1[13/12] 4
t/Y4 ceconds to cort
e Poll: Approximately n selection sort on each

of the following arrays?

14/ 6 | 3|97 |16 2 |15 510/ 8 11|1 13|12| 4




Motivating Divide-and-Conquer

e Main insight:
o Sorting N elements directly takes total time t
o Sorting two sets of N/2 elements (total of N elements) takes t/4 + t/4 =t/2
o We got a speedup just by sorting smaller sets of elements at a time!




Motivating Divide-and-Conquer

e Main insight:
o Sorting N elements directly takes total time t
o Sorting two sets of N/2 elements (total of N elements) takes total time t/2
o We got a speedup just by sorting smaller sets of elements at a time!

e The main idea behind divide-and-conquer algorithms takes advantage of this.
Let's design algorithms that break up a problem into many smaller problems
that can be solved in parallel!




General Divide-and-Conquer Approach

e Our general approach when designing a divide-and-conquer algorithm is to
decide how to make the problem smaller and how to unify the results of these
solved, smaller problems.
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o Divide Step
m Make the problem smaller by splitting up the input list
o Join Step

m Unify the newly sorted sublists to build up the overall sorted result



General Divide-and-Conquer Approach

e Our general approach when designing a divide-and-conquer algorithm is to
decide how to make the problem smaller and how to unify the results of these
solved, smaller problems.

e Both sorting algorithms we explore today will have both of these components:

o Divide Step
m Make the problem smaller by splitting up the input list
o Join Step

m Unify the newly sorted sublists to build up the overall sorted result

e Divide-and-Conquer is a ripe time to return to recursion!



Merge Sort



Merge Sort

A recursive sorting algorithm!

o An empty or single-element list is already sorted.

o Break the list in half and recursively sort each part. (easy divide)
o Use merge to combine them back into a single sorted list (hard join)
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The Key Insight: Merge




The Key Insight: Merge

e The merge algorithm takes in two sorted lists and combines them into a single
sorted list.

e While both lists are nonempty, compare their first elements. Remove the
smaller element and append it to the output.

e Once one listis empty, add all elements from the other list to the output.
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Merge Sort

A recursive sorting algorithm!

o An empty or single-element list is already sorted.

o Break the list in half and recursively sort each part. (easy divide)
o Use merge to combine them back into a single sorted list (hard join)




Merge Sort — Let's look
at the code!



void mergeSort(Vector<int>& vec) {
/* A list with @ or 1 elements is already sorted by definition. */
//base case: vector is size 0 or 1, return and don't need to return a vector
i1f (vec.size() <= 1) return;

/* Split the list into two, equally sized halves */
Vector<int> left, right;
split(vec, left, right);

/* Recursively sort the two halves. */

mergeSort(left);
mergeSort(right);

/*
* Empty out the original vector and re-fill it with merged result
* of the two sorted halves.
L

vec = {}; // our merge expects an empty vector

merge(vec, left, right);




Split function definition

/*

* Given a sequence of n elements (vec), splits the sequence into two
sublists each of size n/2 and stores these sublists in the output
parameters Left and right.

*/
void split(Vector<int>& vec, Vector<int>& left, Vector<int>& right){




Merge function definition

/*

* Merges the sorted sequences vl and v2 into one large, sorted
result.

* Precondition: vl and v2 are sorted, and vec is empty

*/

void merge(Vector<int>& vec, Vector<int>& v1, Vector<int>& v2) {




Announcements



Announcements

e Assignment 3 grades should be out! Revisions are due this Friday at 11:59 pm.
e Assignment 4 grace period ends today at 11:59pm PT.
e Assignment 5 is released! All about linked lists.

o YEAH Hours will be today at 5pm in Hewlett 103.

e |ecture this Thursday will be open project work time!
o Jenny and | will be having open OH in NVIDIA if you have questions.
o We’ll also set up areas in the lecture hall where you can discuss projects by topic so you can
get feedback and ideas from your classmates.

O  Attendance is optional.
e The deadline to change your grading basis or withdraw is this Friday, July 29 at
S5pm.



Analyzing Mergesort:

How fast is this sorting algorithm?




void mergeSort(Vector<int>& vec) {
/* A list with @ or 1 elements is already sorted by definition. */
if (vec.size() <= 1) return;

/* Split the list into two, equally sized halves */
Vector<int> left, right;
split(vec, Lleft, right);

/* Recursively sort the two halves. */
mergeSort(Lleft);
mergeSort(right);

/*
* Empty out the original vector and re-fill it with merged result
* of the two sorted halves.
*/

vec = {};

merge(vec, left, right);
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Vector<int> left, right;
split(vec, left, right);

/* Recursively sort the two halves. */
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How many levels are there?
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Jotal work: O(N * log n)
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void mergeSort(Vector<int>& vec) {
/* A list with @ or 1 elements is already sorted by definition. */
if (vec.size() <= 1) return;

/* Split the list into two, equally sized halves */
Vector<int> left, right;
split(vec, left, right);

/* Recursively sort the two halves. */

mergeSort(Left); O(n log n) work
mergeSort(right);

/*
* Empty out the original vector and re-fill it with merged result
* of the two sorted halves.
*/

vec = {};

merge(vec, left, right);



Analyzing Mergesort: Can we do better?

e Mergesort runs in time O(n log n), which is faster than selection sort’s O(n?).
o Can we do better than this?
o Let's explore one more divide-and-conquer sort!
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A Quick Historical Aside

e Mergesort was one of the first algorithms developed for computers as we
know them today.

e |t was invented by John von Neumann in 1945 (1) as a way of validating the
design of the first “modern” (stored-program) computer.

e Want to learn more about what he did? Check out by Stanford’s very
own Donald Knuth.



https://fermatslibrary.com/s/von-neumanns-first-computer-program

Quicksort
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2. Recursively sort the two partitions that are not equal to the pivot (smaller and

larger elements).
o Now our smaller elements are in sorted order, and our larger elements are also in
sorted order!
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Quicksort Algorithm

1. Partition the elements into three categories based on a chosen pivot element:
o Elements smaller than the pivot
o Elements equal to the pivot
o Elements larger than the pivot

2. Recursively sort the two partitions that are not equal to the pivot (smaller and

larger elements).
o Now our smaller elements are in sorted order, and our larger elements are also in

sorted order! \f\

3. Concatenate the three now-sorted partitions together. Qur s’te,b./
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Quicksort Algorithm

1. Partition the elements into three categories based on a chosen pivot element:
o Elements smaller than the pivot
o Elements equal to the pivot
o Elements larger than the pivot

2. Recursively sort the two partitions that are not equal to the pivot (smaller and

larger elements).
o Now our smaller elements are in sorted order, and our larger elements are also in
sorted order!

3. Concatenate the three now-sorted partitions together.,



Quicksort Pseudocode

void quickSort(Vector<int>& vec){
/* A list with 0 or 1 elements is already sorted by definition. */
if vector length is <= 1: return

/* Pick the pivot and partition the list into three components.
* 1) elements less than the pivot

* 2) elements equal to the pivot

* 3) elements greater than the pivot

*/

Define three empty lists: less, equal, greater

pivot = first element of vector (arbitrary choice)
partition(vec, less, equal, greater, pivot)

/* Recursively sort the two unsorted components. */
quickSort(less)
quickSort(greater)

/* Concatenate newly sorted results and store 1in original vector x/
concatenate(vec, less, equal, greater)



Quicksort Takeaways

e Our “divide” step = partitioning elements based on a pivot

e Our recursive call comes in between dividing and joining
o Base case: One element or no elements to sort!

e Our “join” step = combining the sorted partitions
e Unlike in merge sort where most of the sorting work happens in the “join” step,

our sorting work occurs primarily at the “divide” step for quicksort (when we
sort elements into partitions).



Quicksort Efficiency Analysis

e Similar to Merge Sort, Quicksort also has O (N log N) runtime in the average

case.
o With good choice of pivot, we split the initial list into roughly two equally-sized parts every time.
o Thus, we reach a depth of about 1log N split operations before reaching the base case.
o At each level, we do O (n) work to partition and concatenate.
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e However, Quicksort performance can degrade to O (N?) with poor choice of
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o Come talk to us after class if you're interested in why!



The Limit Does Exist

e Thereisa on the efficiency of comparison-based sorting
algorithms.




Quicksort Efficiency Analysis

e Similar to Merge Sort, Quicksort also has O (N log N) runtime in the average
case.

o With good choice of pivot, we split the initial list into roughly two equally-sized parts every time.
o Thus, we reach a depth of about 1log N split operations before reaching the base case.
o At each level, we do O (n) work to partition and concatenate.

e However, Quicksort performance can degrade to O (N?) with poor choice of

pivot!
o Come talk to us after class if you're interested in why!

e The ultimate question: Can we do better?

o From a space efficiency perspective, yes, there are versions of Quicksort that don't require
making many copies of the list (in-place Quicksort). But from a runtime efficiency perspective...



The Limit Does Exist

e Thereisa on the efficiency of comparison-based sorting
algorithms.

® You can prove that it is not possible to guarantee a list has been sorted unless

you have done
o Take CS161to learn how to write this proof!




The Limit Does Exist

e Thereisa on the efficiency of comparison-based sorting
algorithms.

® You can prove that it is not possible to guarantee a list has been sorted unless

you have done
o Take CS161to learn how to write this proof!

e Thus, we can't do better (in Big-O terms at least) than Merge Sort and

Quicksort!
o Take CS161to learn about how there are actually clever non-comparison-based sorting
algorithms that are able to break this limit.



Final Advice



Assignment 6 Tips

e When implementing the sorting algorithm on linked lists, it is strongly
recommended to implement helper functions for the divide/join components of
the algorithm.

o  For quicksort this means having helper functions for the partition and concatenate operations
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Assignment 6 Tips

e When implementing the sorting algorithm on linked lists, it is strongly
recommended to implement helper functions for the divide/join components of
the algorithm.

o  For quicksort this means having helper functions for the partition and concatenate operations

e These helper functions should be implemented iteratively, but the overall
sorting algorithms itself operates recursively. Mind the distinction!

e Write tests for your helper functions first! Then, write end-to-end tests for your
sorting function.



Summary



https://www.toptal.com/developers/sorting-algorithms
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https://www.toptal.com/developers/sorting-algorithms

Sorting Big-O Cheat Sheet

Sort Worst Case | Best Case | Average Case
Insertion | O(n"2) O(n) O(n*2)
Selection | O(n*2) O(n*2) O(n"2)

Merge O(nlogn) |O(nlogn) [ O(nlog n)

Quicksort | O(n"2) O(nlog n) [ O(n log n)




Sorting

e Sorting is a powerful tool for organizing data in a meaningful format!

e There are many different methods for sorting data:
o Selection Sort

Insertion Sort

Mergesort

Quicksort

And many more...

o O O O

e Understanding the different runtimes and tradeoffs of the different algorithms
is important when choosing the right tool for the job!
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http://www.youtube.com/watch?v=kPRA0W1kECg

What’s next?



Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

analysis problem-solving







